Friday, April 13, 2007

Imagine that one wishes to enter a local lottery along with thousands of other participants. It is immediately recognizable that the chance of one's ticket losing is so high that one is justified in believing that it will not win. Probability seems to confirm the justification for such a belief. Yet, it is not just one's individually purchased ticket that has such a high probability of losing, but any ticket that has been bought in a fair lottery. Furthermore, since one seems justified in believing that each individual ticket will not win, one also seems justified in believing that the conjunction of all tickets, or that every ticket, will not win.<HUH?????, if all have low probablity then all put together have low probablity too????> Yet at the same time, one must also remember that in all lotteries there is the slight probability that a ticket will win. After all, there is often one winner. How, therefore, can one be justified in believing that every ticket will not win, but that one ticket will win?

Original article here.

Kya bakwaas ......

I would rather call it Botox than Paradox... (OK, I am going to have coffee)


Post a Comment